
Fractal: Fault-Tolerant Shell-Script Distribution

Zhicheng Huang∗

Brown University
Ramiz Dundar∗

Brown University
Yizheng Xie

Brown University

Konstantinos Kallas
University of California, Los Angeles

Nikos Vasilakis
Brown University

Abstract
This paper presents FRACTAL, a new system that offers
fault tolerant distributed shell script execution for unmod-
ified scripts. FRACTAL first distinguishes recoverable regions
from side-effectful ones, and augments them with additional
runtime support aimed at fault recovery. It employs precise de-
pendency and progress tracking at the subgraph level to offer
sound and efficient fault recovery. It minimizes the number of
upstream regions that are re-executed during recovery and en-
sures exactly-once semantics upon recovery for downstream
regions. Evaluation on 4- and 30-node clusters indicates aver-
age fault-free speedups of (1) >9.6× over Bash, a single-node
shell-interpreter baseline, (2) >5.5× over Hadoop Streaming,
a MapReduce system that supports language-agnostic third-
party components, and (3) 17% over DISH, a state-of-the-art
fault-intolerant shell-script distribution system—all while re-
covering 7.8–16.4× faster than Hadoop Streaming in cases
of faults.

1 Introduction

The Unix shell remains the 8th most popular language on
GitHub in 2024 [21], widely used for a variety of work-
loads [18, 29, 31, 56, 63]. Its popularity can be attributed
to several characteristics, including (1) language-agnosticism,
flexibly composing an arsenal of task-specific components
available in a variety of languages, and (2) dynamism, provid-
ing features such as command substitution, variable expan-
sion, and file system reflection.

Unfortunately, the shell’s characteristics complicate fault-
tolerant shell-script scale-out. The black-box nature of third-
party components hinders internal state tracking, complicat-
ing recovery after node faults and limiting scale-out oppor-
tunities. Dynamic behaviors and arbitrary side effects make
re-executing failed subgraphs challenging, affecting the cor-
rectness of re-executed scripts. Tolerating faults is often at

1Authors contributed equally. Zhicheng is now with the University of
California, San Diego. Ramiz is now with Google.

Client
Coordinator

R

R
R

SE

R

1 2 3Executor
R

R

R
R

R

SE

Side-effectful

Executor

Executor

R

R

Incomplete
Recoverable

Fig. 1: FRACTAL’s high-level workflow. FRACTAL (1) isolates side-
effectful regions from recoverable regions; (2) executes recoverable
subgraphs on nodes, tracking locality, dependencies, progress, and
health; (3) detects faults, re-scheduling the minimal set of unfinished
subgraphs for re-execution.

odds with maintaining the shell’s expressiveness, without
forcing users to modify existing (often legacy) scripts.

Typical approaches such as checkpointing [5, 6, 8, 37, 66],
barriers [11, 12, 26], and lineage [30, 74] are ill-suited for the
setting of the shell (Table 1). As a result, while research on
and around the shell is exploding [24, 25, 34, 42, 51, 54, 70],
currently no system tolerates faults—e.g., worker aborts or
network partitions—during distributed shell-script execution.

Fault-tolerant distribution with Fractal: FRACTAL is a
system supporting fault-tolerant shell-script distribution: it op-
erates on existing shell scripts without modification, supports
all shell’s dynamic features, allows language-agnostic compo-
sition of black-box components, and enables side-effect-free
distribution with recovery from worker faults.

FRACTAL (Fig. 3) first uses PaSh-JIT [34], a just-in-time
compiler, to transform a POSIX shell script into a data-flow
graph (DFG). FRACTAL’s coordinator then uses command an-
notations to identify side-effectful commands unsafe for fault-
tolerant distribution, to be executed on the client’s node. Next,
for all regions safe for fault-tolerant distribution, it wraps inter-
subgraph edges with a lightweight remote-pipe primitive that
records byte-level progress and enforces exactly-once seman-
tics. FRACTAL’s per-subgraph heuristic decides whether to
persist outputs locally to balance runtime overhead and re-
covery speed. At runtime, after subgraphs are scheduled to

Tab. 1: Comparison of fault tolerance mechanisms across key desiderata in shell scripts.

Desideratum Checkpointing [5, 6, 8, 37, 66] Barrier-based [11, 12, 26] Lineage-based [30, 74] FRACTAL

D1 Handles Black-Box State No Yes No Yes
D2 Ad-Hoc Pipe Streaming Integrity No No No Yes
D3 Side-Effect Management Partial No No Yes
D4 Dynamism Compatibility Partial No No Yes
D5 Recovery Granularity Coarse Coarse Fine Fine
D6 No Script Modification Partial Partial No Yes

executor nodes, FRACTAL’s health and progress monitors con-
tinuously track inter-subgraph dependencies and byte-level
delivery to detect faults. When a fault occurs, the coordi-
nator computes the minimal set of subgraphs that need to
be replayed. By re-executing only these subgraphs, FRAC-
TAL eliminates redundant work and guarantees exactly-once
semantics across all downstream regions.

FRACTAL also introduces a new subsystem, frac (for
fracture), that injects runtime faults in large scale distributed
deployments, enabling fault simulations in an evaluation envi-
ronment. frac can be used independently of FRACTAL and
is therefore released as a separate tool.

Key results: In fault-free scenarios, FRACTAL achieves sub-
stantial performance improvements, delivering an average
speedup of 9.6× over Bash, a standard shell interpreter, 5.5×
over Apache Hadoop Streaming (AHS), a cluster-computing
system incorporating black-box Unix commands, and 17%
over DISH, a recent fault-intolerant scale-out system.

FRACTAL recovers from faults within 1.26× of the script’s
fault-free runtime, achieving a 9.3× speedup over AHS—
while supporting improved expressiveness and requiring no
manual modifications to the source programs.

Paper outline and contributions: The paper starts with
a discussion about the design landscape for fault-tolerant
shell-script distribution (§2). It then introduces FRACTAL’s
design through a motivating example (§3). It proceeds with
FRACTAL’s key subsystems (§4–§6):

• Execution engine (§4): FRACTAL’s remote-pipe instrumen-
tation, progress and health monitors, and executor runtime
enable efficient and precise recovery.

• Performance optimizations (§5): FRACTAL’s targeted opti-
mizations, including event-driven execution, buffered I/O,
and batched scheduling, minimize critical-path overhead.

• Fault injection (§6): FRACTAL’s frac tool enables pre-
cise, large-scale fault injections to characterize recovery
behavior under real-world conditions.

The paper then presents FRACTAL’s evaluation (§7), related
work (§8), limitations (§9), and conclusion (§10).

FRACTAL’s fault model: FRACTAL assumes that worker
nodes may crash in either fail-stop or fail-restart fashion, mir-
roring typical large-scale deployments on commodity hard-
ware. These crashes afflict the long-running, data-parallel

subgraphs where recomputation is expensive, so tolerating
them yields the greatest practical benefit. Resilience of the
coordinator, client shell, and storage master (e.g., the HDFS
NameNode) is outside our scope and can be provided by well-
established primary-backup or consensus replication [27].
Side-effectful commands are confined to a special small sub-
graph on the client node and usually perform quick pre- or
post-processing tasks such as mv, logging, or summary writes.
If the client node fails, rerunning the script repeats only these
minor operations, keeping the overall recovery cost negligi-
ble. By focusing on frequent worker faults and delegating
rarer fault modes to orthogonal techniques, FRACTAL remains
lightweight yet broadly useful.

Availability: FRACTAL’s implementation and evaluation is
publicly accessible as an MIT-licensed open-source project at
https://github.com/binpash/fractal.

2 Fault Tolerance for Shell Script

This section begins by outlining the desiderata for fault-
tolerant shell-script distribution (Table 1, col. 1), derived from
the shell’s unique characteristics. It then examines the limita-
tions of existing fault-tolerance mechanisms in meeting these
desiderata (Table 1, cols. 2-4). Finally, it presents FRACTAL’s
design and how it meets these desiderata (Table 1, col. 5).

2.1 Desiderata
Shell scripts uniquely blend diverse commands, streaming
pipelines, flexible control flow, and dynamic expansion at
runtime. While providing unmatched expressiveness and
simplicity, it complicates fault-tolerant execution. To guide
our design, we identify six fault-tolerance desiderata that any
robust shell-script distribution mechanism must satisfy.

D1 Black-box state handling: Shell pipelines invoke ex-
ternal binaries (e.g., sort, grep, unzip) whose internal state
cannot be inspected or checkpointed. Such commands may
hold gigabytes of data internally without any API for partial
snapshots, making it impossible to selectively roll back and
resume. A fault-tolerance scheme must recover progress with-
out requiring analysis of or hooks in these opaque commands.

D2 Ad-hoc pipe streaming integrity: Shell commands
communicate via unstructured byte streams over ad-hoc

https://github.com/binpash/fractal

UNIX pipes, with arbitrary buffering, chunking, and per-
command transformation semantics. faults leave no record of
how many bytes or which logical “records” were consumed,
and replaying an opaque stream risks duplicating or dropping
data. Under faults, the system must guarantee exactly-once
delivery so that no data is lost or duplicated despite retries.

D3 Side-effect management: Shell commands often per-
form non-idempotent external actions (e.g., appending to files,
making network calls, updating system states) that modify
the environment. Simply re-running a partially completed
side-effectful command can append data again or re-trigger
external actions. Recovery must prevent repeated side effects
or orphaned partial writes.

D4 Dynamism compatibility: Shell scripts are highly dy-
namic, by which their behavior (e.g., control flow, executed
commands, etc.) critically depends on the values of environ-
ment variables and the state of the file system at runtime. A
fault-tolerance design must handle these dynamic behaviors
and not assume that a script’s computation can be determined
statically and ahead-of-time.

D5 Fine recovery granularity: Shell pipelines often chain
many long-running commands, so re-executing whole stages
or other coarse-grained recovery units wastes substantial work.
Achieving fine-grained replay is further complicated by black-
box commands with opaque internal state and by ephemeral
outputs already consumed downstream. Therefore, a robust
recovery mechanism must isolate and replay only the minimal
set of affected subgraphs of the workflow.

D6 No script modification: Shell scripts are notoriously
difficult to program and maintain [19, 22], and modifying
or re-implementing legacy scripts can be costly and error-
prone [15, 16]. Thus, forcing rewrites is prohibitive. An
ideal solution should preserve existing scripts unchanged,
transparently adding recovery support.

2.2 Existing Approaches

We examine three fault-tolerance paradigms—checkpointing,
barrier-based, and lineage-based—and how each falls short of
the shell-script desiderata. It is worth noting that, in practice,
failing to meet even one of the desiderata may be enough to
disqualify a system as a viable solution for shell scripts.

Checkpointing: Checkpointing systems snapshot process
or operator state [5, 6, 8, 37, 66], usually by exposing run-
time hooks in each operator (e.g., in streaming engines
or controlled process trees). in streaming engines or con-
trolled process trees. D1 Checkpointing needs APIs such
as get-processing-state [6] and getState [48] to re-
trieve internal state, impossible for opaque, language-agnostic
shell commands. Incremental or per-operator snapshots
reduce overhead but still require instrumentation inside
each command, which is impossible for opaque shell bi-

naries. D2 Frameworks such as Flink [5], Storm [66],
and Kafka [37] embed barriers or offset-tracked logs, but
UNIX pipes lack both, so checkpointing byte streams would
require external brokers. D3 Transactional sink APIs
(e.g., Flink’s TwoPhaseCommitSinkFunction) manage side-
effectful writes within the framework, but shell scripts per-
form arbitrary file and network I/O outside of any transac-
tion boundary. D4 Checkpointing assumes a static operator
set, hampering recovery when new processes appear mid-
execution. D5 Full snapshots capture entire pipelines or
process trees, imposing high overhead and causing unneces-
sary re-execution for chains of short-lived commands; per-
command checkpointing would introduce prohibitive runtime
overhead and complex coordination. D6 Adopting check-
pointing for shell scripts demands wrapping or replacing ev-
ery invocation, violating the no-modification requirement for
legacy or ad-hoc scripts.

Barrier-based: Barrier-based systems (e.g., MapReduce [11,
12]) achieve fault tolerance by retrying entire map or reduce
tasks upon faults, relying on a static task graph. D1 While
this model supports black-box tasks, it lacks the ability to
resume partially completed computation: failed components
must restart from scratch, even if most work had completed.
D2 Barrier-based models are not ideal for streaming data;
their retry model simply replays upstream outputs, leading to
potential duplication and breaking exactly-once guarantees.
Streaming extensions (e.g., Kafka Streams [37]) guarantee
exactly-once by buffering entire micro-batches or writing to
durable topics—adapting raw UNIX pipes would mean replac-
ing each | with a brokered topic, leading to serialization and
network hops for every pipeline edge and head-of-line block-
ing at batch boundaries, undermining the shell’s low-latency,
in-memory streaming model. D3 Barrier-based retries rerun
every command in a failed task including any non-idempotent
side-effectful commands such as file appends or HTTP calls.
Because there is no transactional or deduplication API at the
shell level, each retry re-issues side-effects. Avoiding du-
plicates requires invasive wrappers or custom idempotency
logic for every shell command, violating transparent execu-
tion. D4 The static task graph must be fully specified before
execution; shell scripts that spawn new commands via loops
or eval cannot be dynamically incorporated, leaving on-the-
fly pipelines untracked. D5 Recovery granularity is fixed
at task boundaries; defining each shell command as its own
task could narrow scope but forces scripts to be restructured
into dozens or hundreds of map/reduce jobs, incurring pro-
hibitive scheduling overhead. D6 Finally, while MapReduce
does not mandate full rewrites, it still requires structuring
logic into map and reduce phases—limiting flexibility and
imposing extra effort when adapting existing or evolving shell
scripts. Hadoop Streaming [26] supports arbitrary binaries
but still forces explicit mapper/reducer wrappers, violating
the no-modification desideratum.

Lineage-based: Lineage-based systems (e.g., Dryad [30]
and Spark [74]) record operator DAGs and only replay failed
tasks. While effective for deterministic dataflows in one
framework, they struggle with ad-hoc shell pipelines. D1 Lin-
eage frameworks assume each operator is a pure function
of its visible inputs and outputs, but black-box shell com-
mands (e.g., sort, uniq) buffer and transform data internally
without producing retrievable artifacts, so lineage cannot re-
construct progress. D2 Spark Streaming’s micro-batch and
offset model cannot fit unbounded UNIX pipes, so it would
require rewriting each pipe as a Spark stage. D3 Lineage
frameworks mitigate side-effects via transactional sinks only
if every write goes through their API, but shell commands
perform arbitrary I/O (e.g., >>, mv) outside of any transaction
boundary, requiring invasive wrappers to prevent duplicates.
D4 Dynamic DAG registration requires user callbacks (e.g.,
writeStream in Spark Structured Streaming), whereas shell
loops and eval spawn processes silently, leaving lineage un-
notified and unprepared to recover new branches. D5 They
support granular recomputation: if tasks and dependencies
are captured, they recompute only failed partitions and de-
pendencies. D6 Lineage approaches require rewriting scripts
into deterministic, functional forms that match the lineage
mode, cumbersome for legacy or rapidly evolving scripts.

2.3 Our approach

At its core, FRACTAL treats a program subgraph as the atomic
unit of computation, because shell commands are isolated
processes whose pipes and files are declared explicitly, so
their dependencies are visible without deep analysis. This
design avoids costly instrumentations of every individual shell
command while remaining fine-grained enough to avoid large-
scale re-execution. At subgraph boundaries, FRACTAL injects
minimal runtime primitives that transparently track progress
and enable precise recovery without affecting the internal
logic of any black-box command.

This model addresses the key challenges of shell-script
fault tolerance. D1 By tracking only inputs and outputs for
each subgraph, we never peek inside a command’s memory or
file descriptors. Each command remains unmodified; recovery
works solely from its byte-stream boundaries. D2 Byte-level
progress tracking guarantees no data loss or duplication, even
when a subgraph mixes streaming filters with blocking op-
erators. D3 Commands with non-idempotent side effects
remain in a special subgraph under user control; distributed
subgraphs perform only pure data transformations or write
to isolated files that can be atomically swapped in upon suc-
cess. D4 Subgraphs are derived at compile time from the
AST, so any new commands—spawned via loops, condi-
tionals, or environment expansions—automatically become
first-class fault-tolerance units without requiring a static rep-
resentation. D5 FRACTAL recovers at the subgraph level,
not per-command. Because the data-flow compiler inflates

1 #!/bin/bash
2 in=${in:-$TOP/log-analysis/nginx-logs}
3 out=${out:/outputs}
4 bots='Googlebot|Bingbot|Baiduspider|Yandex|'
5 mkdir $out && hdfs dfs -mkdir /log-analysis
6

7 # 1. Download and store nginx logs to HDFS
8 wget "$SOURCE/data/nginx-logs.zip"
9 unzip nginx-logs.zip && rm nginx-logs.zip

10 hdfs dfs -put nginx-logs /log-analysis/nginx-logs
11

12 # 2. Analyze log files
13 for log in $(hdfs dfs -ls -C $in); do
14 name="$out/$(basename "$log".log)"
15 # 3. Identify bot IPs by visit frequency
16 hdfs dfs -cat "$log" | grep -E $bots | cut -d" " -f1 |
17 sort | uniq -c | sort -rn >> "${name}.out"
18 # Further analysis omitted for brevity...
19 done

Fig. 2: Log analysis script (Cf.§3). The script downloads Nginx
logs, stores them on a distributed filesystem, and analyzes them
to extract traffic statistics—slightly modified from POSH [54] to
highlight idiomatic shell challenges.

each pipeline into orders-of-magnitude more black-box com-
mands, granular recovery at the command-level would force
every one of them to be wrapped, coordinated, and potentially
rolled back synchronously, incurring prohibitive overhead.
Subgraph-level recovery strikes a sweet spot: small enough
to avoid re-doing large amounts of work, yet coarse enough
to amortize the runtime instrumentation cost. D6 All fault-
tolerance logic is injected by the compiler. Users run unmodi-
fied POSIX shell scripts under FRACTAL, without needing to
reexperss their script in constrained APIs.

While the focus is correct and efficient recovery, FRACTAL
also aims to deliver near state-of-the-art performance in fault-
free executions.

3 Example and Overview

Scripts that process large datasets usually need to interact with
a distributed file system (DFS) such as HDFS [58], NFS [28],
or Alluxio [41], as their input data does not fit on a single
computer. FRACTAL scales out the computation to facilitate
data locality, data parallelism, and pipeline parallelism, while
ensuring recoverability when a participating node fails.

Example script and problem: Fig. 2 presents an example
shell script analyzing Nginx logs, divided into three parts: (1)
setup (L7−10), downloading 150GB of logs and storing them
on HDFS; (2) driver (L13−14, L19), iterating over the HDFS di-
rectory, piping log files to the analysis pipeline and appending
results to a dynamically determined local file; and (3) analysis
(L15−18), identifying known bot IPs by visit frequency.

A developer opting for distributed execution, either manual
or more recently automated [51, 54], is left with only one op-
tion when a compute node fails: to restart the entire computa-
tion. Unfortunately, such a restart impacts both performance,

Coordinator

Progress Monitor

Health Monitor

Scheduler

#!/bin/bash

for log in $(hdfs dfs -ls -C $in); do

 hdfs dfs -cat "$log" | grep | cut | sort | uniq | sort -rn >> "${log}.out"

done

PaSh-JIT Compiler

blk1 cat grep cut sort …

blk2 cat grep cut sort

sort -m out1

Executor Runtime

DFS File Reader

Event loop

Local Disk Persistence

 Event Queue

Executor

Executor Runtime

 DFS File Reader

Event loop

Local Disk Persistence

 Event Queue

Executor

B3

B2
B1

blk1 cat grep cut sort …

blk2 cat grep cut sort

sort -m out1

Main
Merger
Regular
Remote Pipe

 Side-effect; Remote pipes; Persist or not

A5

A6
A4

B4

 Side-effect; Remote pipes; Persist or not

A1 Side-effect A2 Remote pipes Persist or notA3

Fig. 3: FRACTAL’s architecture. From a client shell script, FRACTAL uses PaSh-JIT to build a DFG, applies annotations to isolate the unsafe
main subgraph (A1), and splits the rest into regular and merger subgraphs at HDFS block boundaries. It then instruments each edge with
remote-pipe primitives (A2) and uses a lightweight heuristic to persist outputs per subgraph (A3). The coordinator schedules subgraphs (A4)
and leverages the progress (A5) and health (A6) monitors to re-execute only failed subgraphs. Executors reconstruct subgraphs into shell
scripts and run them in a tight, non-blocking event loop (B1-4), streaming data via remote pipes, the distributed file reader, and local cache.

as a full rerun will waste over 3 hours, and correctness, as
the script appends to a file and thus upon fault may result in
partial outputs—worse even, potentially mixed with correct
results from earlier fault-free executions.

Challenges for fault tolerance: The script in Fig. 2 il-
lustrates why fault tolerance is so challenging: it invokes
black-box commands (e.g., uniq -c at L17) whose internal
counters cannot be inspected or checkpointed (D1), passes
data through chains of ephemeral UNIX pipes (e.g., from
grep to sort, then to uniq) with no built-in barriers or
offsets (D2), and relies on side-effectful operations (e.g.,
the append operator >> at L17) that risk duplication or par-
tial writes upon retry (D3). Control-flow constructs such
as for log in $IN/*.log spawn commands dynamically
based on variable values, preventing any static view of the
computation graph (D4). Re-executing the entire script on
150GB of logs takes over 3 hours, so a coarse-grained rerun is
prohibitively expensive (D5). Finally, such scripts are often
legacy or incrementally maintained, so frameworks requiring
modifying them are error-prone and impractical. (D6).

Fractal overview: Fig. 3 presents an overview of FRAC-
TAL. FRACTAL builds on PaSh-JIT [34] to retrieve a DFG
representation of the target script. FRACTAL’s coordinator
then leverages command annotations to group subgraphs into
one of three types with different fault-recovery semantics
(Fig. 3, A1): (1) main, which contains the AST region pre-
viously deemed as “unsafe” for distribution and is executed
on a node containing the authoritative shell state and broader
environment—typically, the client node from which the com-
putation is initiated, (2) regular, which does not include an
aggregator vertex, and (3) merger, which includes an aggre-
gator vertex, (e.g., sort -m), responsible for merging the out-
puts of multiple upstream subgraphs. It then instruments every

inter-subgraph edge with lightweight communicative primi-
tives (Fig. 3, A2) that record delivered byte offsets and enforce
exactly-once semantics over ad-hoc UNIX pipes. Next, a per-
subgraph, heuristic-based component (Fig. 3, A3) decides
whether to persist each subgraph’s outputs locally, balancing
recovery speed against fault-free overhead. Once prepared,
the coordinator schedules subgraphs across executor nodes
and relies on progress and health monitors to track execution
progress and detect faults (Fig. 3, A4-6). On a node fault, it
identifies and re-executes only the incomplete downstream
subgraphs, ensuring both correctness and efficiency in recov-
ery. Executors (Fig. 3, B1-4) receive their assigned subgraphs,
reconstruct them into shell scripts, and run them in a tight,
non-blocking event loop that maximizes CPU utilization with-
out oversubscription.

Results: On a 30-node Cloudlab cluster (§7), FRACTAL
executes Fig. 2’s script in 220s (speedup: 40×). Upon fault at
50% of the execution, FRACTAL executes only the necessary
subgraphs—outputting correct results across all local and
HDFS files in 330s (27.1×).

4 System Design

This section presents FRACTAL’s fault recovery design and
core components that drive the execution and recovery.

4.1 Fault Recovery in FRACTAL

When the health monitor alerts the coordinator about a node
fault, the rescheduling of necessary subgraphs occurs in five
steps where FRACTAL (1) identifies all incomplete subgraphs
assigned to the crashed node and, by querying progress mon-
itoring, their dependencies; (2) sends kill requests to sub-

graphs that cannot be used in the new execution plan; (3)
updates the progress monitor according to the new execution
plan; (4) identifies subgraphs that no longer need to be re-
executed because their results are persisted; (5) distributes the
optimized set of subgraphs based on the new execution plan.

Recovery strategies differ for merger and regular faults.
When a merger fails, FRACTAL spawns a new merger and
reschedules incomplete upstreams to stream to it, while com-
pleted ones send their persisted output. When a regular
fails, FRACTAL restarts the subgraph elsewhere and tells its
downstream merger to resume reading from the last byte, so
the merger itself is not rerun.

While the new execution plan is being prepared, the sched-
uler may receive new dataflow graphs to distribute. To avoid
concurrent modifications to the progress monitor and further
complications, crash handling and scheduling are performed
under locks and are mutually exclusive.

When a loop is unrolled into parallel subgraphs, FRAC-
TAL tracks read-write and write-write dependencies between
iterations to establish execution order and isolation. If an
iteration’s corresponding subgraph fails, the scheduler applies
the standard five-step crash-handling procedure only to that
iteration and any upstream dependencies, while independent
iterations are neither reissued nor re-executed. Completed
iterations either reuse persisted outputs or are simply skipped,
ensuring faults in one iteration would not force recomputation
of its peers unless necessary.

4.2 FRACTAL Components

DFG augmentation: First, FRACTAL employs PaSh-
JIT [34]1, a just-in-time compiler designed to parse POSIX
shell scripts into an abstract-syntax tree and emits a command-
level DFG. For example, it transforms Fig. 2 into data-
parallel sort commands and an aggregating sort -m. Before
scheduling, FRACTAL augments each DFG subgraph with re-
mote pipes, a distributed, exactly-once replacement for the
familiar Unix pipes, to track execution progress and ensure
correctness during fault recovery. For instance, in Fig. 3 (A4),
remote pipes are added at the boundary between the merger
and regular subgraphs and between the merger and main
subgraphs. The scheduler then assigns each subgraph to an ex-
ecutor node, replaces original inter-subgraph edges with these
remote pipes, and updates the progress-monitor metadata.

Progress monitor: The progress monitor maintains all meta-
data needed for fault recovery: subgraph-to-node assignments,
completion events, and inter-subgraph dependencies. Upon
completing a send or receive operation, each subgraph emits
a 17-byte completion event to the progress monitor, con-
taining its serialized edge ID and a one-byte flag indicating
whether it sent or received. The scheduler then uses these com-

1Any compiler that produces an equivalent DFG schema can be plugged
in without changes to FRACTAL.

pact messages to determine exactly which subgraphs must be
re-executed after a fault. When persistence is enabled, the
monitor also tracks file locations so that already-persisted
subgraphs are not re-executed after a fault.

The discovery service is a submodule for subgraphs to
dynamically locate peers. It acts as a barrier between writers
and readers, blocking one until the other registers and initiates
data transfer. The service also records persisted-file locations
under dynamic persistence, so cached subgraphs are not rerun
after fault.

Remote pipe: Efficient communication enables precise
recovery, as lost or duplicated bytes break correctness and
wastes work. Remote Pipes provide unidirectional channels
between writers and readers, identified by one edge ID. The
reader polls until its matching writer registers before stream-
ing data. Remote pipes run in transient (sockets) or persistent
(files) mode, decided by the dynamic persistence switch. If
persistence is disabled, the writer opens a socket and registers
its endpoint for the reader to resolve; if enabled, the writer
writes to a file and exposes its path for retrieving the data
during potential re-executions.

Detecting and handling faults is crucial for the remote pipe.
If a connection is lost, the reader periodically queries the
discovery service. When a new address is found after the
upstream is rescheduled, a new connection is made. The
reader consumes the stream in buffered chunks and forwards
data downstream when the complete data chunk is ready.
Since the reader knows how many bytes it has already for-
warded downstream, it can discard duplicates and maintain
a correct, non-repetitive data stream. This prevents dupli-
cate output from side-effectful operators (e.g., the append
operator shown in Fig. 2) during re-executions.

Dynamic output persistence: Upon node fault, any in-
complete subgraph and its upstream dependencies must be
re-executed, which can be costly with expensive upstream
tasks. To reduce this overhead, FRACTAL can persist the out-
puts of upstream subgraphs so that reassigned tasks can read
cached results instead of recomputing them. However, during
fault-free execution, such local writes incur costs that vary
with node hardware (e.g., HDD vs. NVMe).

To strike a balance, FRACTAL employs a heuristic-driven
dynamic persistence policy to make per-subgraph decisions
based on static cluster profiling (e.g., SSD sizes) and runtime
workload characteristics (e.g., commands and inputs). In-
puts confined to a single DFS block—the smallest fixed-size
unit of data replicated across machines—run data-locally; dis-
tributing them and persisting their output adds network and
replication I/O but no recovery benefit: node fault still loses
the cached outputs. Therefore, FRACTAL tags such subgraphs
created at DFS block boundaries with no downstream depen-
dents as singular subgraphs and skip persistence. FRACTAL
makes per-subgraph decisions: it disables output persistence
for singular subgraphs and selectively enables it for others

based on cost heuristics.
When persisting, the writer appends its output to a temp

file, and a per-node file transmitter streams it downstream.
The reader still receives data on the fly while each byte is
written exactly once, avoiding the extra CPU, memory, and
PCIe traffic incurred by alternative “tee-to-disk” designs.

Health monitor: Modern DFS typically exposes per-worker
heart-beats and block-location metadata for querying liveness.
FRACTAL’s prototype builds on HDFS [58], a widely de-
ployed reference implementation, and can be extended to any
other DFS that expose a similar interface.

The health monitor polls the HDFS namenode’s JMX end-
point for each data node’s lastContact heartbeat timestamp.
Nodes whose lastContact exceeds a configurable threshold
are flagged offline. This threshold involves a balance between
false positives and false negatives. A small threshold results in
frequent false positives, where temporary network slowdowns
are mistaken for faults, triggering costly fault recovery. Con-
versely, a high threshold causes the system to wait unnecessar-
ily for outputs from faulty nodes. Therefore, the threshold is
designed to be configurable. The default value of 10 seconds
is selected arbitrarily to ensure it does not dominate the execu-
tion time during evaluation (§7), while allowing a substantial
portion of the execution to complete before initiating fault
recovery mechanisms. This liveness information drives the
scheduler’s fault recovery decisions, triggering re-executions
of affected subgraphs on healthy nodes.

Relying on HDFS heartbeats is an intentional choice to
avoid scenarios where FRACTAL nodes appear to be available
but HDFS nodes are not, or vice versa.

Executor runtime: The executor runtime receives serial-
ized subgraphs from the coordinator and deserializes them
into shell scripts. It then stages deserialized scripts and their
metadata in a temporary directory for execution.

Every 0.1s, it performs three actions: (1) reclaims com-
pleted tasks—removing them from the active pool and record-
ing timing and debug metadata; (2) applies pending kill
requests from the coordinator by dropping targeted events
from the queue; and (3) launches queued subgraphs up to the
configured concurrency limit by spawning new processes.

Additionally, the executor runtime also manages envi-
ronment setup and teardown (e.g., terminating remnants of
rescheduled subgraphs to avoid duplicated executions), col-
lects timing and diagnostic metadata, and enables controlled
fault injection during evaluation.

Command annotations: Previous systems [34, 51, 54, 70]
use command annotations to expose parallelisation oppor-
tunities. FRACTAL inherits PaSh-JIT’s JSON-based anno-
tation catalogue (see Section A for example annotations).
Commands that depend on (e.g., ls) or modify (e.g., rm)
node-local states, are annotated as side-effectful and there-
fore pinned to the client-side main subgraph to preserve se-
quential semantics. These annotations enable FRACTAL to

distinguish safely re-executable regions (e.g., pure data trans-
formations) from non-re-executable ones (e.g., side-effectful
or non-deterministic operations), ensuring only subgraphs
containing all safe commands are re-executed on fault. Re-
gions cannot be safely re-executed are offloaded to be part of
the main subgraph, which is executed on the client node. The
default catalogue already covers 89 common Unix commands,
so most scripts require no additional effort. Adding a new
entry for a customized command is a single JSON file (≈ 10
LOC). When a developer lacks the expertise to annotate a
custom command, FRACTAL conservatively treats it as un-
safe for fault-tolerant distribution and therefore executes that
region on the client node. Such contributions grow a shared
annotation repository for shell commands [40, 54], akin to
TypeScript’s crowdsourced DefinitelyTyped [1, 55, 69].

5 Optimizations

This section presents targeted optimizations to FRACTAL’s
critical-path components, reducing control-plane overhead
and addressing implementation-specific challenges.

Event-driven architecture: The event loop in the execu-
tor runtime (§4.2) is among FRACTAL’s most performance-
sensitive components. To eliminate synchronization overhead,
it relies solely on atomic operations (e.g., integer assignments
and list append/pop) instead of locks. Completion events
are kept to 17 bytes each (edge ID plus direction flag) to
minimize messaging overhead. The loop polls every 0.1s to
balance kill-signal responsiveness against CPU utilization,
and its concurrency level, the maximum number of subgraphs
launched in parallel, is configurable per node, defaulting to
the CPU core count to match hardware capacity.

Buffered I/O: To mark the end of an remote pipe stream,
the writer appends an 8-byte EOF token. However, detecting
and removing this sentinel on-the-fly is challenging because
the reader cannot buffer the entire stream or perform full-
stream scans. To address these challenges, the reader employs
a buffered I/O strategy with several optimizations. It first
allocates a configurable buffer, typically 4096 bytes, and
ensures that at least 8 bytes are initially read—–this is always
possible because the presence of the EOF token guarantees at
least 8 bytes of data. After this initial setup, the reader enters a
loop that (1) performs another read to fill the buffer following
the initial 8-byte segment; (2) sends the buffer’s contents,
except for the final 8 bytes, downstream; (3) checks whether
these last 8 bytes match the EOF token and, if they do, stops
reading; and (4) moves the last 8 bytes to the start of the buffer,
ready for the next iteration. This approach reduces overhead
to at most an 8-byte copy for each iteration without generating
unnecessary garbage, offering a significant improvement over
simpler, linear parsing methods.

Batched scheduling: If a script’s input is relatively large
or consists of many smaller files, FRACTAL may generate an

excessive number of subgraphs to schedule, track, and exe-
cute. In such cases, distributing subgraphs can become more
time-consuming than executing them. To address this issue,
FRACTAL collects and batches all subgraphs with identical
targets into a single request and sends these batches asyn-
chronously to all cluster members. Such batching becomes
increasingly important as the cluster size grows.

6 Fault Injection

To aid parameter selection and recovery characteriza-
tion, FRACTAL’s fault-injection subsystem, available as a
command-line tool called frac, allows injecting runtime
fail-stop and fail-restart faults in large-scale distributed de-
ployments. The frac subsystem is agnostic to deploy-
ment and component internals, and has been used to inject
faults to FRACTAL with various deployment environments
and fault conditions during evaluation. Contrary to manual
killing, frac offers automation, operates at byte-level and
millisecond-level precision, can be driven by key events, al-
lows automated restarts—and, by operating at the process-tree
level, offers significant performance improvements over com-
plete node shutdown, accelerating parameter selection and
recovery characterization.

Hard faults: Manually shutting down compute nodes run-
ning the executor processes, termed hard fault, ensures they
end up offline by issuing commands to the host environment.
Unfortunately, hard faults are hard to automate at large-scale
experiments. Existing VM shutdown tools are not ideal be-
cause the aforementioned experiments require non-graceful
shutdowns, and verifying that nodes have truly come back
up requires custom Docker-level health checks (e.g., polling
until each block reaches its target replication factor).

Hard faults additionally do not support fine-grained control
over the timing of fault events, crucial for precisely charac-
terizing a system’s recovery behavior. This limitation is less
problematic for systems with balanced execution progress
across nodes. For example, the mapper and reducer of AHS
are load-balanced across the cluster and thus a fault injec-
tion will hit different nodes at roughly the same execution
progress. However, FRACTAL sees imbalanced progression
across regular and merger nodes, thus requiring and bene-
fiting from improved precision in fault injection.

Soft faults: The frac tool offers two soft faults modes.
Data-plane mode injects a fault token into the stream that
matches one node’s wrapper. The token travels through
the entire DFG, propagated downstream by remote pipes,
and is copied by DFG splitters, reaching every parallel
branch. Wrappers forward the token unchanged, skipping
their wrapped command, except the one on the target sub-
graph’s ingress edge; that wrapper terminates all processes
in its subgraph. This mode offers fine-grained byte-level pre-
cision for determining the exact point at which to inject a

Tab. 2: Benchmark summary. Summary of all the benchmarks
used to evaluate FRACTAL and their characteristics.

Benchmark Scripts LoC AHS Input

Classics 10 103 ✓ 3 GB
Unix50 34 34 ✓ 10 GB
NLP 22 280 ✘ 10 GB
Analytics 5 62 ✓ 33.4 GB
Automation 6 68 ✘ 2.1-30 GB

10−2 10−1 100 101 102

Speedup

0.0

0.5

1.0

D
en

si
ty

 (P
D

F) AHS
DiSh
Fractal

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
(C

D
F)30 NodesAHS

DiSh
Fractal

Fig. 4: Fault-free performance summary. Summary of AHS,
DISH, and FRACTAL 30-node fault-free speedups over Bash across
all benchmarks: FRACTAL is comparable to DISH and significantly
faster than AHS.

node fault, when the precise fault conditions hinge on specific
elements of the data stream.

A control-plane mode sends a special token directly to
the node responsible either at a specific time point or by
the trigger of a specific event. Additional automation col-
lects baseline execution times about the various jobs on each
node. In a subsequent run, the coordinator injects the fault
at a configurable time or percentage of a node’s fault-free
execution time. Focusing on the completion percentage of
individual nodes is important in cases where the execution
is not balanced—for example, 50% end-to-end job comple-
tion does not translate to 50% of AHS’s map or FRACTAL’s
regular node execution, as these nodes typically consume a
minority of the runtime. Once it receives a message from the
coordinator, the fault terminates its HDFS datanode process
and kills the corresponding process. Control-plane soft faults
offer coarser-grained precision for determining the poitn at
which to inject a fault, often incorporating higher-level goals
such as completion percentages.

7 Evaluation

This section characterizes FRACTAL’s performance under
fail-free and fault-induced executions.

Baselines: We compare FRACTAL with (1) Bash [65], a
standard single-node shell interpreter that establishes sequen-
tial performance; (2) Apache Hadoop Streaming [26], a
MapReduce-backed system that offers fault-tolerant execution
of arbitrary binaries, including black-box Unix commands,

providing a production-grade reference for recovery time; and
(3) DISH [51], a state-of-the-art system for automatic shell-
script distribution that lacks fault tolerance, representing the
best published speedups in the fault-free regime. All three
run the original scripts unchanged, except that AHS requires
the usual mapper / reducer wrappers.

Benchmarks: We used five real-world benchmark sets
(Tab. 2) from the Koala benchmark suite [39]2, totaling
77 scripts and 547 lines of shell code (LoC) excluding
empty lines and comments. Classics [2, 3, 33, 46, 64]
and Unix50 [4, 38] comprise scripts that extensively in-
voke UNIX and Linux built-in commands. NLP [7] features
scripts from a tutorial focused on developing natural lan-
guage processing programs using UNIX and Linux utilities.
Analytics [68, 72] features data-processing scripts, includ-
ing actual telemetry data from mass-transit schedules during a
large metropolitan area’s COVID-19 response and multi-year
temperature data across the US. Automation [54, 57, 59] fea-
tures scripts for processing, transforming, and compressing
video and audio files, typical system administration and net-
work traffic analyses over log files, and aliases for encrypting
and compressing files.

Hardware & software setup: Experiments were conducted
on two clusters: (1) 30 Cloudlab m510 nodes, each with
8-core Intel Xeon D-1548 CPU at 2.0 GHz, 64GB RAM,
256 GB NVMe, and 10-Gb connection; (2) 4 on-premise
Raspberry Pi-5 nodes, each with a 4-core Arm Cortex A76
CPU at 2.4 GHz, 8GB RAM, 1TB SSD, and 1-Gb connection.
The Pi-5 cluster results confirm FRACTAL’s benefits extend to
both datacenter servers and resource-constrained edge devices,
demonstrating its portability.

To improve reproducibility and ease deployment, we use
Ubuntu 22.04-based Docker Swarm images on both 4 and 30
node clusters. We used Bash v5.1.16, Apache Hadoop v3.4.0,
Python v3.10.12, and Go v1.22.2.

FRACTAL is developed on top of the PaSh-JIT com-
piler [34], which includes a Python re-implementation of
libdash [23] a POSIX-compliant shell-script parser. FRAC-
TAL adds 2K lines of Python (scheduler, monitors, executor
runtime), 1.1K lines of Go (remote pipe and services), and
0.73K lines of shell script. An additional 389 lines of Python
and 4.1K lines of shell scripts comprise the frac tool.

Correctness: The results of over 100 repetitions across sev-
eral dozen distributed deployments and fault scenarios, over
70 scripts, and over 200GB of inputs are identical to those of
the sequential script execution, offering significant confidence
about FRACTAL’s correct execution and recovery.

2These benchmarks were originally introduced in PASH and DISH [34,
51, 70] and later incorporated into the Koala benchmark suite.

Tab. 3: Fault-free performance comparison highlights. Average,
minimum, and maximum speedups over Bash for FRACTAL, DISH,
and AHS across all benchmarks.

4 Node 30 Node

System Avg Min Max Avg Min Max

FRACTAL 5.93 0.28 18.55 9.64 0.22 107.8
DISH 5.88 0.15 19.04 8.20 0.10 78.35
AHS 1.27 0.01 6.94 1.99 0.02 9.48

7.1 Fault-Free Execution
This section characterizes the speedup of FRACTAL over Bash
against DISH and AHS (Fig. 4).

Experiments: We execute all benchmarks on Bash, DISH,
AHS, and FRACTAL on both clusters without injecting any
faults. While Bash, DISH, and FRACTAL execute all shell
scripts without modifications, AHS requires modifications.
Not all shell scripts are expressible in AHS; those that are
(Tab. 2, col. AHS) are used to compare AHS with FRACTAL.

Results: Fig. 5 shows the speedup of the three systems over
Bash on the two clusters (key comparisons in Tab. 3). On
the 30-node cluster, FRACTAL achieves an average speedup
of 9.64× (max: 107.84×) compared to 8.2× (max: 78.35×)
for DISH and 1.99× (max: 9.48×) for AHS. On the 4-node
cluster, FRACTAL achieves an average speedup of 5.93×
(max: 18.55×), compared to DISH’s 5.88× (max: 19.04×)
and AHS’s 1.27× (max: 6.94×).

Excluding the Unix50 and NLP benchmarks, which are
not well-suited for scaling across large clusters, FRACTAL
achieves an average speedup of 4.66× on a 4-node cluster
and 21.90× on a 30-node cluster.

Section 3’s log-analysis script (Fig. 2), part of Automation,
processes 30GB in 2140s on Pi-5 and 1524s on m510. FRAC-
TAL brings it to 436s (4.90×) on the 4-node Pi-5 cluster and
484s (3.15×) on the 30-node Cloudlab cluster.

Discussion: FRACTAL is almost always faster than Bash, but
the exact speedup achieved depends largely on the paralleliza-
tion characteristics of each script. Scripts whose regular
subgraphs consist of filters (e.g., grep) or folds (e.g., wc) per-
form better, as they reduce the runtime fraction used for I/O
or the sequential merger. Conversely, scripts that do not filter
as much or spend more time merging results experience lower
speedups. Short-running scripts such as Unix50’s 4.sh and
34.sh experience slowdowns, as their runtime is dominated
by near-instant heads—but still remain within 1s.

FRACTAL performs better than AHS because it exploits
pipeline, data, and task parallelism for the entire pipeline. By
contrast, AHS workflows often comprise multiple map and
reduce stages, each of which must complete before the next
begins, leaving parallelism opportunities unexploited.

FRACTAL sometimes outperforms DISH, attributing to
FRACTAL’s low-overhead output persistence design (§4.2),

Classics Unix50 Analytics NLP Automation

10−2

10−1

100

101

102

Sp
ee

du
p

4 Nodes

Classics Unix50 Analytics NLP Automation

30 Nodes

AHS
DiSh
Fractal

Fig. 5: Fault-free performance comparison (Cf.§7.1). Comparison between fault-free execution speedups of AHS, DISH, and FRACTAL,
relative to single-node Bash, on the 4-node Pi-5 cluster (left) and the 30-node Cloudlab cluster (right).

10% 50% 90%

102

103

Ti
m

e
(s

)

Fractal

AHS

Classics/top-n.sh

AHS Fault
Regular Fault
Merger Fault

10% 50% 90%

Fractal

AHS

Analytics/vpd.sh

10% 50% 90%

Fractal

AHS

Analytics/temp.sh

Completion percentage at which fault was introduced

Fig. 6: Recovery comparison (Cf.§7.2). Comparison between the
FRACTAL and AHS recovery times for 3 representative scripts (left,
mid, right), with faults introduced at 10%, 50%, and 90% of the
execution—and without faults (dashed lines).

control-plane optimizations (§5), and minimal fault-tolerance
overheads in fault-free execution paths. First, with persis-
tence on, FRACTAL uses a local file as a proxy for the socket
send, avoiding the extra CPU, memory, and PCIe traffic in-
curred by alternative “tee-to-disk” designs. Unlike DISH’s
blocking TCP buffers, FRACTAL uses effectively unbounded
buffers, so it can pre-compute larger execution units, advanta-
geous in workloads with complex, interdependent subgraphs
where DISH’s buffer constraints become bottlenecks. Second,
FRACTAL’s control-plane optimizations (e.g., asynchronous
batching) scales well in fault-free executions, explaining the
larger gains on 30 nodes. Lastly, even in fault-free runs,
FRACTAL’s fault-tolerance overhead is minimal: each execu-
tor in Classics only adds 136B over the network and writes
1MB to disk. FRACTAL’s extra sequential write becomes
more visible when (1) a script forms wide fan-in pipelines
whose many internal edges are all persisted, (2) those edges
carry gigabytes of data yet do almost no computation per byte,
and (3) the job runs on a very small cluster, so control-plane
optimization gains are negligible.

The smaller speed-up on the larger cluster with the example
log-analysis script (Fig. 2) is because the job is I/O-bound

rather than CPU-bound. Its critical path consists of (1) stream-
ing full log files over the network instead of reading from the
local page cache and (2) the single-threaded merger, whose
sort now merges eight remote partitions. On the 4-node Pi-5
cluster the data remain largely local and only four partitions
need merging, so the relative gain is higher.

7.2 Performance of Fault Recovery
We characterize FRACTAL’s fault recovery with one experi-
ment comparing FRACTAL with AHS failing at various stages
and another characterizing FRACTAL under more scenarios.

Experiments: The first experiment assesses the time it takes
FRACTAL and AHS to recover and successfully complete
the job on the 4-node deployment. We introduce faults at
approximately 10%, 50%, and 90% of the baseline execution
time: at 10%, AHS executes mappers and FRACTAL executes
regular subgraphs; at 90%, AHS executes reducers and
FRACTAL executes merger subgraphs. In separate runs, we
inject faults into an arbitrary AHS node, a base-case regular
node, and a worst-case merger node. Combining all these
configurations with hard faults takes prohibitive manual effort,
so we focus on three of the collected benchmarks here.3

The second experiment zooms into FRACTAL’s fault recov-
ery under different fault scenarios on both clusters. It employs
soft faults using frac, and all benchmarks except NLP and
Unix50 as they contain many short-running scripts.

Results: Fig. 6 summarizes the first experiment. The x-
axis shows different completion percentages and the y-axis
shows the time it takes AHS and FRACTAL (both regular
and merger nodes) to recover. For context, dashed lines (con-
stant across the x-axis) represent the fault-free executions
for AHS (avg: 937.6s) and FRACTAL (avg: 118.9s). Under
regular faults, it takes FRACTAL 160s (134.5% vs. fault-
free), 136.5s (114.8%), and 118.8s (100.1%) to recover for

3Total: 3 completion percents × 3 system configs (AHS, regular,
merger) × 2 fault modes × 5 repetitions × 3 benchmarks = 270 experi-
ments (about a week of manual effort) instead of 6,930 experiments.

Tab. 4: FRACTAL’s speedup over AHS for different fault conditions
and recovery scenarios. Format: avg (min–max).

Regular Recovery Merger Recovery

Fail at 10% 7.8× (3.2–16.0×) 8.5× (3.2–15.9×)
Fail at 50% 12.1× (8.0–19.7×) 8.3× (4.8–13.9×)
Fail at 90% 16.4× (8.9–32.9×) 8.0× (4.3–14.3×)

Classics Analytics Automation

101

102

103

Ti
m

e
(s

)

4 Nodes

Classics Analytics Automation

30 Nodes
No Fault
Regular-Node Fault
Merger-Node Fault

Fig. 7: Recovery comparison (soft faults) (Cf.§7.2). FRACTAL

execution times for three benchmark sets (Classics, Analytics, Au-
tomation) with no faults, regular faults, and merger faults on a
4-node Pi-5 cluster (left) and a 30-node Cloudlab cluster (right).

each execution percentile; under merger faults, these become
147.7s (124.2% vs. fault-free), 200.2s (168.3%), and 244.4s
(205.6%) respectively. For the same percentiles, it takes AHS
1,248.8s (133.2% vs. AHS fault-free, 780.9% vs. regular,
845.5% vs. merger), 1,655.8s (176.6% vs. AHS fault-free,
1,213.2% vs. regular, 727.1% vs. merger), and 1,953.4s
(208.3%, 1,644.3%, 799.1%). Tab. 4 summarizes the compar-
ison between AHS and FRACTAL.

Fig. 7 summarizes the second experiment, showing execu-
tion times for fault-free, regular recovery, and merger re-
covery. Benchmarks with fewer parallel pipelines (e.g., Clas-
sics and Analytics) take 20.3–32.1% longer to recover from
merger (209.4–344.8s) than regular node faults (150.4–
277.6s). For other benchmarks, there is not a significant
difference between the recovery of different nodes (335.3–
845.0s for regular vs. 335.7–856.5s for merger).

Discussion: Overall, the first experiment shows that FRAC-
TAL recovers at a fraction (6.08–12.8%) of AHS’s recovery
time. The speedup stems from selectively re-executing only
affected tasks while preserving parallelization benefits (§7.1)
during recovery.

Recovery time increases for faults that occur later in execu-
tion (Fig. 6) because more upstream subgraphs must be re-run.
FRACTAL’s regular faults are an exception to this pattern
because the regular subgraphs have already completed by
the time the node fails. This non-interference is important in
practice: regular nodes make up most of distributed execu-

NLP

102

Ti
m

e
(s

)

Enabled
Disabled
Dynamic

Analytics
102

2 × 102

3 × 102

4 × 102

Ti
m

e
(s

)

Fig. 8: Microbenchmark: dynamic persistence (Cf.§7.3). Fault-
free NLP benchmark (left) and fault-injected Analytics benchmark
(right) with dynamic persistence enabled, disabled, and set dynami-
cally by FRACTAL’s heuristics.

tions, so a random infrastructure fault is most likely to affect
a regular node.

As this experiment compares hard faults introduced manu-
ally and soft faults injected by frac, it confirms that the two
modes result in identical executions across 270 experiments—
but frac completes experiments at about 2–5% of the hard-
fault time, and without the mental overhead of keeping manual
track of various experiment timepoints.

Diving into various types of recovery (Fig. 7) indicates
that the pipeline-to-node ratio of pipelines is correlated with
merger-to-regular node recovery performance. This obser-
vation is intuitive for two reasons. First, benchmarks that rely
on a single pipeline (e.g., Classics and Analytics) expe-
rience longer recovery times from merger faults than from
regular faults, since regular faults involve re-executing
fewer subgraphs. Second, benchmarks with many pipelines
(e.g., Automation) are indifferent to merger and regular
recovery times: having a larger number of merger subgraphs
distributes the workload evenly, effectively making every
node a merger node and neutralizing the impact type.

7.3 Microbenchmark: Dynamic Persistence

This experiment evaluates dynamic subgraph-output persis-
tence and how it strikes a balance between fault recovery
efficiencies and overhead during fault-free execution.

Experiments: We explore output-persistence trade-offs us-
ing two benchmark sets under different fault conditions and
with both persistence options (enabled and disabled): NLP
(no faults) features many parallel pipelines, each using a
small input (<128MB); Analytics (merger faults) fea-
tures long-running regular (upstream) subgraphs. The pair
captures the two extremes our heuristic must handle: NLP
stresses fault-free overhead where persistence should be off,
whereas a merger-node crash in Analytics stresses recovery
time where persistence should be on.

Results: Fig. 8 compares three output-persistence options.
For fault-free NLP, enabling persistence results in 21.0% over-

head on average; for fault-injected Analytics, disabling per-
sistence results in 38.7% overhead on average. At runtime,
FRACTAL’s dynamic persistence switch selects the optimal
option for both cases, balancing performance and fault toler-
ance effectively.

Discussion: Enabling output persistence for short-running
workloads adds considerable overhead yet offers little bene-
fit. Regular and merger subgraphs are typically co-located,
so a fault makes both unavailable and forces re-execution
regardless of persistence. Failed long-running scripts see
significant benefits from output persistence, as they avoid
significant upstream re-execution. FRACTAL first-order work-
load heuristics—e.g., size of DFG graphs, input sizes—decide
whether to enable persistence for the the benchmarks.

8 Related Work

FRACTAL is related to a large body of work in distributed
shells and shell-related utilities, distributed computing frame-
works, and language-based distributed systems.

Distributed shells and utilities: Several command-line
job-scheduling tools allow distributing workloads on Unix
systems—e.g., qsub for the Sun Grid Engine [20] and
parallel for GNU Parallel [62]—but their invocation re-
quires careful manual orchestration and does not come with
fault tolerance built-in. Slurm [73], a workload manager for
distributing batch jobs across computing clusters, provides pe-
riodic check-pointing for later resumption using DMTCP [35].
This mechanism focuses only on recovering Slurm-visible
state, does not support complex commands, and fails to ac-
count for thorny shell semantics such as append (§3).

Shells like Rc [13], Dgsh [60], and gsh [45] offer scalable,
often non-linear and acyclic, extensions to Unix pipelines but
require manual rewriting and do not tolerate faults.

Recent systems such as PaSh [34, 70], POSH [54], and
DISH [51] offer automated parallelization and distribution
of shell programs. Similar to FRACTAL, they automatically
transform scripts to internal representations to be parallelized
and distributed; however, they are not fault-tolerant.

Distributed computing frameworks: FRACTAL combines
elements from distributed batching and streaming systems [11,
47, 49, 50, 53, 61, 71, 74]. These systems offer the ability to
tolerate faults, often by tracking lineage similarly to FRAC-
TAL [47, 74], but require their users to (re-)implement their
programs using the abstractions these systems provide. These
systems do not support the black-box nature, runtime expan-
sion behaviors, and arbitrary side effects pervasive in the
commands typically present in shell programs.

Hadoop Streaming [26] and Dryad Nebula [30] are unusual
in that they allow the use of black-box components such as
Unix commands. However, they do not target the semantics
of the shell and thus require users to manually port their shell
programs—often facing the difficulty or inability to express

entire classes of shell programs as FRACTAL’s evaluation con-
firms. FRACTAL provides automated scale-out of unmodified
shell scripts, supports the shell’s dynamic-expansion features,
and offers efficient fault tolerance by tracking lineage.

Other cloud offerings: Prior work on VM- and container-
level replication has used check-pointing [9, 10, 14, 36, 44]
to tolerate faults. Contrary to FRACTAL, these approaches
leverage logging, require infrastructure support, and lack a
logical understanding of the workload.

Serverless platforms have started introducing stateful oper-
ations [32,43,75] and thus fault tolerance, through a combina-
tion of logging and check-pointing. Different from FRACTAL,
these systems do not support shell scripts or arbitrary black
box commands—users need to (re)write their scripts in the
abstractions provided by these systems to see benefits.

The gg system [17] supports scaling black box commands
to serverless functions. In contrast to FRACTAL, gg does not
support pipeline parallelism and attempts full executions via
a re-try mechanism when faults occur.

9 Limitations

FRACTAL’s fault model focuses on high-impact faults that
are especially important for the shell, and so does not address
orthogonal types of faults. First, FRACTAL assumes a highly
available coordinator, which could be achieved by using any
consensus protocol such as Raft [52] to replicate its state (e.g.,
progress log, discovery metadata). Second, FRACTAL does
not yet distribute or recover side-effectful commands that
mutate external state (e.g., mv, curl, database writes). One
way to address that would be to use a sandbox mechanism,
such as TRY [67], which can record and roll back file-system
changes and therefore enable capturing and replaying side-
effectful subgraphs.

Finally, while the single-coordinator design scales com-
fortably to our 30-node experiments, larger container-dense
deployments may require sharding or a hierarchical scheduler.
Exploring this control-plane scaling is left for future work.

10 Conclusion

Transparent fault tolerance is a sine qua non for scalable
shell-script distribution: without it, unmodified POSIX scripts
cannot reliably handle the black-box binaries, ad-hoc pipes,
non-idempotent side effects, and dynamic control flow that
characterize real-world workflows.

FRACTAL is the first system that offers fault-tolerant
shell-script distribution by separating recoverable from side-
effectful regions. It performs lightweight instrumentation to
record byte-level progress and enforce exactly-once semantics.
By employing precise dependency and progress tracking at
the subgraph level, it offer sound and efficient fault recovery.

Acknowledgements

We thank the NSDI’26 reviewers for their feedback; our shep-
herd, Eric Eide, for his guidance; the NSDI’26 Artifact re-
viewers for their time; and the Brown CS2952R (Fall’24)
participants for their input on several iterations of this pa-
per. This material is based upon research supported by NSF
awards CNS-2247687 and CNS-2312346; DARPA contract
no. HR001124C0486; a Fall’24 Amazon Research Award;
a Google ML-and-Systems Junior Faculty award; a seed
grant from Brown University’s Data Science Institute; and a
BrownCS Faculty Innovation Award.

References

[1] Christopher Anderson, Paola Giannini, and Sophia
Drossopoulou. Towards type inference for javascript. In
European conference on Object-oriented programming,
pages 428–452. Springer, 2005.

[2] Jon Bentley. Programming pearls: a spelling checker.
Commun. ACM, 28(5):456–462, may 1985.

[3] Jon Bentley, Don Knuth, and Doug McIlroy. Pro-
gramming pearls: a literate program. Commun. ACM,
29(6):471–483, jun 1986.

[4] Pawan Bhandari. Solutions to unixgame.io, 2020. Ac-
cessed: 2020-04-14.

[5] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi,
Stefan Richter, and Kostas Tzoumas. State management
in apache flink®: consistent stateful distributed stream
processing. Proc. VLDB Endow., 10(12):1718–1729,
aug 2017.

[6] Raul Castro Fernandez, Matteo Migliavacca, Evangelia
Kalyvianaki, and Peter Pietzuch. Integrating scale out
and fault tolerance in stream processing using operator
state management. In Proceedings of the 2013 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 725–736, New York, NY,
USA, 2013. Association for Computing Machinery.

[7] Kenneth Ward Church. Unix™ for poets, 1994. Notes
of a course from the European Summer School on Lan-
guage and Speech Communication, Corpus Based Meth-
ods.

[8] CRIU community. Checkpoint/restart in userspace
(criu). https://criu.org/, 2019. Accessed: April
2025.

[9] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and
Junfeng Yang. Paxos made transparent. In Proceedings
of the 25th Symposium on Operating Systems Principles,
pages 105–120, 2015.

[10] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX sympo-
sium on networked systems design and implementation,
pages 161–174. San Francisco, 2008.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: sim-
plified data processing on large clusters. Communica-
tions of the ACM, 51(1):107–113, 2008.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a
flexible data processing tool. Commun. ACM, 53(1):72–
77, jan 2010.

[13] Tom Duff. Rc—a shell for plan 9 and unix systems.
AUUGN, 12(1):75, 1990.

[14] George W Dunlap, Dominic G Lucchetti, Michael A
Fetterman, and Peter M Chen. Execution replay of
multiprocessor virtual machines. In Proceedings of the
fourth ACM SIGPLAN/SIGOPS international confer-
ence on Virtual execution environments, pages 121–130,
2008.

[15] Johan Eveleens and Chris Verhoef. The rise and fall of
the chaos report figures. IEEE software, 27(1):30–36,
2009.

[16] Bent Flyvbjerg and Alexander Budzier. Why your it
project might be riskier than you think. arXiv preprint
arXiv:1304.0265, 2013.

[17] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Outsourc-
ing everyday jobs to thousands of transient functional
containers. In 2019 USENIX annual technical confer-
ence (USENIX ATC 19), pages 475–488, 2019.

[18] Aeleen Frisch. Essential system administration: Tools
and techniques for linux and unix administration. "
O’Reilly Media, Inc.", 2002.

[19] Ishaan Gandhi and Anshula Gandhi. Lightening the
cognitive load of shell programming. PLATEAU 2020,
2020.

[20] Wolfgang Gentzsch. Sun grid engine: Towards creating
a compute power grid. In Proceedings First IEEE/ACM
International Symposium on Cluster Computing and the
Grid, pages 35–36. IEEE, 2001.

[21] GitHub. The state of the octoverse 2024: The most pop-
ular programming languages, 2024. Accessed: 2024-
10-31.

https://criu.org/

[22] Michael Greenberg. Word expansion supports posix
shell interactivity. In Companion Proceedings of the
2nd International Conference on the Art, Science, and
Engineering of Programming, pages 153–160, 2018.

[23] Michael Greenberg. libdash. https://github.com/m
gree/libdash, 2019. [Online; accessed November 22,
2024].

[24] Michael Greenberg and Austin J Blatt. Executable
formal semantics for the posix shell. Proceedings of
the ACM on Programming Languages, 4(POPL):1–30,
2019.

[25] Michael Greenberg, Konstantinos Kallas, and Nikos
Vasilakis. Unix shell programming: the next 50 years.
In Proceedings of the Workshop on Hot Topics in Oper-
ating Systems, pages 104–111, 2021.

[26] Hadoop. Hadoop streaming. https://hadoop.apa
che.org/docs/r3.4.0/hadoop-streaming/Hadoo
pStreaming.html, 2024. [Online; accessed June 13,
2024].

[27] Saurav Haloi. Apache zookeeper essentials. Packt
Publishing Ltd, 2015.

[28] Thomas Haynes and David Noveck. Network file sys-
tem (nfs) version 4 protocol. Technical report, 2015.

[29] Jordan Henkel, Christian Bird, Shuvendu K Lahiri, and
Thomas Reps. Learning from, understanding, and sup-
porting devops artifacts for docker. In Proceedings of
the ACM/IEEE 42nd international conference on soft-
ware engineering, pages 38–49, 2020.

[30] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell,
and Dennis Fetterly. Dryad: distributed data-parallel
programs from sequential building blocks. In Pro-
ceedings of the 2nd ACM SIGOPS/EuroSys European
conference on computer systems 2007, pages 59–72,
2007.

[31] Jeroen Janssens. Data science at the command line:
Facing the future with time-tested tools. " O’Reilly
Media, Inc.", 2014.

[32] Zhipeng Jia and Emmett Witchel. Boki: Stateful server-
less computing with shared logs. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems
Principles, pages 691–707, 2021.

[33] Dan Jurafsky. Unix for poets, 2017. Accessed: 2024-
09-16.

[34] Konstantinos Kallas, Tammam Mustafa, Jan Bielak,
Dimitris Karnikis, Thurston H.Y. Dang, Michael Green-
berg, and Nikos Vasilakis. Practically correct, just-in-
time shell script parallelization. In 16th USENIX Sympo-
sium on Operating Systems Design and Implementation

(OSDI 22), pages 1–18. USENIX Association, July
2022.

[35] Gene Kapadia, Jason Ansel, Kapil Arya, Charles Guo,
Daniel Maze, Mihir Modi, Cameron Musco, Alexey
Lory, and Gene Cooperman. Dmtcp: Distributed mul-
tithreaded checkpointing. https://dmtcp.sourcefo
rge.io/, 2024. Accessed: 2024-11-29.

[36] Manos Kapritsos, Yang Wang, Vivien Quema, Allen
Clement, Lorenzo Alvisi, and Mike Dahlin. All
about eve:{Execute-Verify} replication for {Multi-
Core} servers. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12),
pages 237–250, 2012.

[37] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In Pro-
ceedings of the NetDB, volume 11, pages 1–7. Athens,
Greece, 2011.

[38] Nokia Bell Labs. The unix game—solve puzzles using
unix pipes, 2019. Accessed: 2020-03-05.

[39] Evangelos Lamprou, Ethan Williams, Georgios Kaoukis,
Zhuoxuan Zhang, Michael Greenberg, Konstantinos
Kallas, Lukas Lazarek, and Nikos Vasilakis. The koala
benchmarks for the shell: Characterization and impli-
cations. In Proceedings of the 2025 USENIX Annual
Technical Conference (USENIX ATC ’25), pages 449–
64, Boston, MA, July 2025. USENIX Association.

[40] Lukas Lazarek, Seong-Heon Jung, Evangelos Lamprou,
Zekai Li, Anirudh Narsipur, Eric Zhao, Michael Green-
berg, Konstantinos Kallas, Konstantinos Mamouras, and
Nikos Vasilakis. From ahead-of-to just-in-time and
back again: Static analysis for unix shell programs. In
Proceedings of the 2025 Workshop on Hot Topics in
Operating Systems, pages 88–95, 2025.

[41] Haoyuan Li. Alluxio: A virtual distributed file system.
University of California, Berkeley, 2018.

[42] Georgios Liargkovas, Konstantinos Kallas, Michael
Greenberg, and Nikos Vasilakis. Executing shell scripts
in the wrong order, correctly. In Proceedings of the 19th
Workshop on Hot Topics in Operating Systems, pages
103–109, 2023.

[43] David H Liu, Amit Levy, Shadi Noghabi, and Sebas-
tian Burckhardt. Doing more with less: Orchestrating
serverless applications without an orchestrator. In 20th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1505–1519, 2023.

[44] Haikun Liu, Hai Jin, Xiaofei Liao, Liting Hu, and Chen
Yu. Live migration of virtual machine based on full
system trace and replay. In Proceedings of the 18th

https://github.com/mgree/libdash
https://github.com/mgree/libdash
https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://hadoop.apache.org/docs/r3.4.0/hadoop-streaming/HadoopStreaming.html
https://dmtcp.sourceforge.io/
https://dmtcp.sourceforge.io/

ACM international symposium on High performance
distributed computing, pages 101–110, 2009.

[45] Chris McDonald and Trevor I Dix. Support for graphs of
processes in a command interpreter. Software: Practice
and Experience, 18(10):1011–1016, 1988.

[46] Malcolm D. McIlroy, Elliot N. Pinson, and Berkley A.
Tague. Unix time-sharing system: Foreword. Bell
System Technical Journal, 57(6):1899–1904, 1978.

[47] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pages
561–577, 2018.

[48] Derek G. Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 439–455, New York, NY,
USA, 2013. Association for Computing Machinery.

[49] Derek G Murray, Frank McSherry, Rebecca Isaacs,
Michael Isard, Paul Barham, and Martín Abadi. Na-
iad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 439–455, 2013.

[50] Derek G Murray, Malte Schwarzkopf, Christopher
Smowton, Steven Smith, Anil Madhavapeddy, and
Steven Hand. {CIEL}: A universal execution engine
for distributed {Data-Flow} computing. In 8th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 11), 2011.

[51] Tammam Mustafa, Konstantinos Kallas, Pratyush Das,
and Nikos Vasilakis. DiSh: Dynamic Shell-Script dis-
tribution. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23), pages
341–356, Boston, MA, April 2023. USENIX Associa-
tion.

[52] Diego Ongaro and John Ousterhout. In search of an
understandable consensus algorithm. In 2014 USENIX
annual technical conference (USENIX ATC 14), pages
305–319, 2014.

[53] Russell Power and Jinyang Li. Piccolo: Building fast,
distributed programs with partitioned tables. In 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 10), 2010.

[54] Deepti Raghavan, Sadjad Fouladi, Philip Levis, and
Matei Zaharia. POSH: A data-aware shell. In 2020
USENIX Annual Technical Conference (USENIX ATC
20), pages 617–631, 2020.

[55] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin
Bierman, and Panagiotis Vekris. Safe & efficient grad-
ual typing for typescript. In Proceedings of the 42Nd
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 167–180, 2015.

[56] Arnold Robbins and Nelson HF Beebe. Classic Shell
Scripting: Hidden Commands that Unlock the Power of
Unix. " O’Reilly Media, Inc.", 2005.

[57] Michael Schröder and Jürgen Cito. An empirical in-
vestigation of command-line customization. Empirical
Software Engineering, 27(2), December 2021.

[58] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In 2010 IEEE 26th Symposium on Mass Storage Systems
and Technologies (MSST), pages 1–10, 2010.

[59] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547–1561, 2017.

[60] Diomidis Spinellis and Marios Fragkoulis. Extending
unix pipelines to dags. IEEE Transactions on Comput-
ers, 66(9):1547–1561, 2017.

[61] Craig A Stewart, Timothy M Cockerill, Ian Foster,
David Hancock, Nirav Merchant, Edwin Skidmore,
Daniel Stanzione, James Taylor, Steven Tuecke, George
Turner, et al. Jetstream: a self-provisioned, scalable
science and engineering cloud environment. In Pro-
ceedings of the 2015 XSEDE Conference: Scientific
Advancements Enabled by Enhanced Cyberinfrastruc-
ture, pages 1–8, 2015.

[62] Ole Tange. Gnu parallel-the command-line power tool.
Usenix Mag, 36(1):42, 2011.

[63] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
2004.

[64] Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for
Linux, Mac OS X, and Unix Systems. No Starch Press,
USA, 2004.

[65] The Free Software Foundation. Bash shell, 2009. [On-
line; accessed 30-October-2024].

[66] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik
Ramasamy, Jignesh M Patel, Sanjeev Kulkarni, Jason
Jackson, Krishna Gade, Maosong Fu, Jake Donham,

et al. Storm@ twitter. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of
data, pages 147–156, 2014.

[67] Try Authors. try: Inspect a command’s effects before
modifying your live system. https://github.com/b
inpash/try, 2023. Version 0.2.0, accessed August 13,
2025.

[68] Eleftheria Tsaliki and Diomidis Spinellis. The real
statistics of buses in athens, 2021.

[69] TypeScript Authors. TypeScript. https://www.type
scriptlang.org/.

[70] Nikos Vasilakis, Konstantinos Kallas, Konstanti-
nos Mamouras, Achilles Benetopoulos, and Lazar
Cvetković. Pash: Light-touch data-parallel shell pro-
cessing. In Proceedings of the Sixteenth European Con-
ference on Computer Systems, pages 49–66, New York,
NY, USA, 2021. Association for Computing Machinery.

[71] Tom White. Hadoop: The definitive guide. " O’Reilly
Media, Inc.", 2012.

[72] Tom White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., 4th edition, 2015.

[73] Andy B Yoo, Morris A Jette, and Mark Grondona.
Slurm: Simple linux utility for resource management.
In Workshop on job scheduling strategies for parallel
processing, pages 44–60. Springer, 2003.

[74] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das,
Ankur Dave, Justin Ma, Murphy McCauley, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: a fault-tolerant abstraction for in-
memory cluster computing. In Proceedings of the
9th USENIX Conference on Networked Systems De-
sign and Implementation, NSDI’12, page 2, USA, 2012.
USENIX Association.

[75] Haoran Zhang, Adney Cardoza, Peter Baile Chen, Se-
bastian Angel, and Vincent Liu. Fault-tolerant and
transactional stateful serverless workflows. In 14th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 1187–1204, 2020.

A Example Annotation Interface

This appendix shows two example annotations for rm
and sort commands, as discussed in §4.2. Each an-
notation is a JSON object with a command field and a
list of cases that describe the command’s behavior un-
der different predicates. For each case, the inputs
and outputs fields specify the command’s input and out-
put channels, respectively. The class field indicates

whether the command is pure—non-parallelizable but side-
effect-free, side-effectful—non-parallelizable and side-
effectful, stateless—parallelizable without requiring cus-
tom aggregation, or parallelizable_pure—parallelizable
but requiring user-defined aggregation. The properties
field lists additional properties of the command, such as
commutative specifying that the command allows split-
ting and processing data-parallel partial inputs in order-
independent batches. A full description and discussion of
the annotation can be found in PASH papers [34, 70].

For example, the rm command is side-effectful as it deletes
files and does not support parallel execution.

{
"command": "rm",
"cases": [
{
"predicate": "default",
"class": "side-effectful",
"inputs": ["stdin"],
"outputs": ["stdout"]

}
]

}

The sort command is non-parallelizable when the -m op-
tion is provided, as it merges pre-sorted inputs. When -m is
not provided, sort is parallelizable and requires aggregation
using sort -m to ensure correct results.

{
"command": "sort",
"cases":
[

{
"predicate":
{

"operator": "exists",
"operands": ["-m"]

},
"class": "pure",
"inputs": ["args[:]"],
"outputs": ["stdout"]

},
{

"predicate": "default",
"class": "parallelizable_pure",
"properties": ["commutative"],
"agg": "sort",
"inputs": ["stdin"],
"outputs": ["stdout"],
"aggregator":
{

"name": "sort",
"options": ["-m"]

}
}

],
}

https://github.com/binpash/try
https://github.com/binpash/try
https://www.typescriptlang.org/
https://www.typescriptlang.org/

	Introduction
	Fault Tolerance for Shell Script
	Desiderata
	Existing Approaches
	Our approach

	Example and Overview
	System Design
	Fault Recovery in Fractal
	Fractal Components

	Optimizations
	Fault Injection
	Evaluation
	Fault-Free Execution
	Performance of Fault Recovery
	Microbenchmark: Dynamic Persistence

	Related Work
	Limitations
	Conclusion
	Example Annotation Interface

